Evolutionary Multimodal Optimization Revisited
نویسندگان
چکیده
We revisit a class of multimodal function optimizations using evolutionary algorithms reformulated into a multiobjective framework where previous implementations have needed niching/sharing to ensure diversity. In this paper, we use a steady-state multiobjective algorithm which preserves diversity without niching to produce diverse sampling of the Pareto-front with significantly lower computational effort. Multimodal optimization (MMO) and multiobjective optimization (MOO) are two classes of optimizations requiring multiple (near-)optimal solutions: having found a solution set, a user makes a selection from the (hopefully) diverse options. In this context, niching/sharing techniques have been commonly employed to ensure a diverse solution set although such techniques work the best when one has a priori knowledge of the problem. In most real-problems, the analytical form is unknown and so picking good niche parameters is problematic. Consequently, most of the work related to MMO using EAs has been done to test the efficacy of the EAs in solving known problems rather than solving the problem per se. Watson [1] concluded that sharing-based GAs often perform worse than random search and questioned whether niching is really useful for identifying multiple fitness peaks in MMOs. We have revisited solving MMO using EAs without any problem-dependent parameters using the same reformulation of MMO into a MOO framework as [2], to obtain good diversity in objective space without any explicit diversity-preserving operator. Deb [2] has recast of a number of single-objective MMO problems into dualobjective MOO problems and empirically investigated the effects of sharing. Many have studied the promotion of diversity using sharing for MOO problems – see [3] for a review. We have used a MOO algorithm [3] which, to the best of our knowledge, is the only implementation which does not need any explicit sharing mechanism; we demonstrate its efficacy in achieving diversity for two sample MMO problems, F1 (Sect. 4.1 of [2]) and F2 (Sect. 5.3 of [2]) which were considered by earlier researchers using multiobjective methods. We have used the same formulation, as far as is ∗ Partially supported by the Ministry of Human Resource Development, Government of India Evolutionary Multimodal Optimization Revisited 1593 known, for fair comparison. We repeated the experiments many hundreds of times, each with a different initial population to check the consistency of the results. Typical results selected on the basis of their average performance are presented below. The multi-modal F2 function can be recast as a multiobjective problem requiring the simultaneous minimization of f21(x1) and f22; see Sect. 5.3 of reference [2] for more details. Figure 1a shows the initial population (size = 100) where we obtain individuals near the optima by random chance. Figure 1b shows the population after 100 epochs which can be compared with the results for 500 generations in [2] and are superior to those in [2] both in terms of proximity to the Pareto-optimal front and diversity. Significantly this has been achieved at reduced computational cost. We have also studied the F1 function (Sect. 4.1 of [2]) and find a result entirely consistent with that we have observed with function F2 – see [3]. Explicit diversity preserving methods need prior knowledge and their efficacy depends on parameter fine-tuning; without proper values they cannot be beneficial. Claims of the superiority of variablevs. objective space sharing are unfounded, problem dependent and nothing general can be said on the selection of proper values for niching/sharing. In conclusion, we have shown that we can solve multimodal problems by recasting them as multiobjective ones without an explicit niching/sharing. Comparing our results with previous work [2], the algorithm employed here provided superior diversity and proximity to the true Pareto-front at reduced computational cost.
منابع مشابه
Fitness sharing and niching methods revisited
Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recom...
متن کاملEvolutionary Multimodal Optimization: A Short Survey
Real world problems always have different multiple solutions. For instance, optical engineers need to tune the recording parameters to get as many optimal solutions as possible for multiple trials in the varied-line-spacing holographic grating design problem. Unfortunately, most traditional optimization techniques focus on solving for a single optimal solution. They need to be applied several t...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملAdaptive Elitist-Population Based Genetic Algorithm for Multimodal Function Optimization
This paper introduces a new technique called adaptive elitistpopulation search method for allowing unimodal function optimization methods to be extended to efficiently locate all optima of multimodal problems. The technique is based on the concept of adaptively adjusting the population size according to the individuals’ dissimilarity and the novel elitist genetic operators. Incorporation of the...
متن کاملAn Evolutionary Model for Solving Multiplayer Noncooperative Games
Computing equilibria of multiplayer noncooperative normal form games is a difficult computational task. In games having more equilibria mathematical algorithms are not capable to detect all equilibria at a time. Evolutionary algorithms are powerful search tools for solving difficult optimization problems. It is shown how an evolutionary algorithm designed for multimodal optimization can be used...
متن کاملFunctional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization
Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multimodal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts’ requirements, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003